Part Number Hot Search : 
8050M SE304 H6040 H0010 FDS6690S 227M0 LT1509 HE552
Product Description
Full Text Search
 

To Download R5105N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Microprocessor Supervisory Circuit
R5105N SERIES
OUTLINE
NO. EA-159-070908
The R5105N Series are CMOS-based con supervisory circuit, or high accuracy and ultra low supply current voltage detector with built-in delay circuit and watchdog timer. When the supply voltage is down across the threshold, or the watchdog timer does not detect the system clock from the con, the reset output is generated. The voltage detector circuit is used for the system reset, etc. The detector threshold is fixed internally, and the tolerance is 1.0%. The released delay time (Power-on Reset Delay) circuit is built-in, and output delay time is adjustable with an external capacitor. When the supply voltage becomes the released voltage, the reset state will be maintained during the delay time. The time out period of the watchdog timer can be also set with an external capacitor. The output type of the reset is selectable, Nch open-drain, or CMOS. The package is small SOT-23-6.
FEATURES
* Built-in a watchdog timer's time out period accuracy 30% * Timeout period for watchdog and generating a reset signal can be set by an external capacitor * Detector Threshold Voltage ***************************** 0.1V stepwise setting in the range from 1.5V to 5.5V * Supply current ************************************************** Typ. 11A * Operating Voltage ******************************************** 0.9V to 6.0V * High Accuracy Output Voltage of Detector Threshold ********************************************* 1.0% * Power-on Reset Delay Time accuracy************* 20% * Power-on reset delay time of the voltage detector can be set with an external capacitor. * Small Package ************************************************* SOT-23-6
APPLICATION
* Supervisory circuit for equipment with using microprocessors.
1
R5105N
BLOCK DIAGRAMS
R5105Nxx1A
VDD
+
CD
-
-
+
GND
WATCHDOG TIMER CLOCK DETECTOR
TW
SCK
RESETB
R5105Nxx1C
VDD
CD
+
-
+
GND
WATCHDOG TIMER CLOCK DETECTOR
TW
SCK
RESETB
2
R5105N
SELECTION GUIDE
The selection can be made with designating the part number as shown below: R5105Nxx1x-TR part Number a bcd Code a b c d Descriptions Designation of Package Type; N: SOT-23-6 (2.8mmx2.9mm) Designation of Detector Threshold Voltage (-VDET) 0.1V stepwise setting is possible in the range from 1.5V to 5.5V Designation of the output type of RESETB A: Nch open-drain output C: CMOS output Designation of Taping Type
PIN CONFIGURATION
SCK
1 R5105NxxxA
6
CD
TW
2
R5105NxxxC
5
GND
VDD
3
4
RESETB
SOT 23-6
PIN DESCRIPTION
Pin No 1 2 3 4 5 6 Symbol SCK TW VDD RESETB GND CD Pin Description Clock Input Pin from Microprocessor External Capacitor Pin for setting Reset and Watchdog Timer Timeout Period Power supply Pin Output Pin for Reset signal of Watchdog timer and Voltage Detector. (Output "L" at detecting Detector Threshold and Watchdog Timer Reset.) Ground Pin External Capacitor Pin for Setting delay time of Voltage Detector
3
R5105N
ABSOLUTE MAXIMUM RATINGS
Topt=25C, VSS=0V
Symbol VIN VCT VTW VRESETB VSCK IRESETB PD Topt Tstg Input Voltage Output Current Power Dissipation Output Voltage Supply Voltage
Item
Rating -0.37.0
Unit V V V V V mA mW C C
Voltage of CD Pin Voltage of TW Pin Voltage of RESETB Pin Voltage of SCK Pin Current of RESETB Pin
-0.3VIN+0.3 -0.3VIN+0.3 -0.37.0 -0.37.0 20 250 -40+105 -55+125
Operating Temperature Range Storage Temperature Range
4
R5105N
ELECTRICAL CHARACTERISTICS
R5105NxxxA/C Symbol VIN Iss Unless otherwise specified, VIN=6.0V, CT=0.1uF, Rpull-up=100k Item Operating Voltage Supply Current VIN=(-VDET)+0.5V Clock pulse input Voltage Detector VIN pin Threshold -40CTopt105C Conditions Min. 0.9 11 Typ.
Topt=25C The number written in bold font is applied to the temperature range from -40C to 105C
Max. 6.0 15 x1.010 x1.015
Unit V A
-VDET -VDET/ Topt VHYS tpLH IDOUTN IDOUTP
Detector Threshold Detector Threshold Temperature Coefficient Detector Threshold Hysteresis Output Delay Time Output Current (RESETB Output pin) Output Current (RESETB Output pin) Watchdog Timeout period Reset Hold Time of WDT SCK Input "H" SCK Input "L" SCK Input Pulse Width
x0.990 x0.972 100
V ppm/ C V ms mA mA
CD=0.1F Nch, VDD=1.2V, VDS=0.1V Pch, VDD=6.0V, VDS=0.5V (R5105NxxxC) Watchdog Timer CTW=0.1uF CTW=0.1uF
(-VDET) (-VDET) (-VDET) x0.03 x0.07 x0.05 340 467 370 0.38 0.65 0.80 0.90
TWD TWR VSCKH VSCKL TSCKW
230 29 VINx0.8 0.0
310 34
450 48 6.0 VINx0.2
ms ms V V ns
VSCKL=VINx0.2, VSCKH=VINx0.8
500
Bold type values are guaranteed by design.
TYPICAL APPLICATIONS
Power supply R VDD RESETB R5105NxxxA Power supply
VDD
RESET VDD RESETB R5105NxxxC
VDD
RESET
P
SCK TW CTW I/O
P
SCK TW CTW I/O
Series
C CD CD GND
Series
C CD CD GND
5
R5105N
TEST CIRCUIT
R(R5105NxxxA)
A
VDD
RESETB SCK
R5105NxxxA/C Series CD CCD
Clock Input
GND
TW CTW
Supply Current Test Circuit
6
R5105N
TIMING DIAGRAM (R5105NxxxA/R5105NxxxC)
(Nch open-drain, RESETB pin is pulled up to VDD.)
VDD
tpHL CD VTCD
tpHL
TWD VrefH TW VrefL
TWDI
SCK
tpLH
tpLH
TWR
(1)
(2)
(3)
(4)
(1)
7
R5105N
OPERATION
M When the power supply, VIN pin voltage becomes more than the released voltage (+VDET), after the released delay time (or the power on reset time tpLH), the output of RESETB becomes "H" level. N When the SCK pulse is input, the watchdog timer is cleared, and TW pin mode changes from the discharge mode to the charge mode. When the TW pin voltage becomes higher than VREFH, the mode will change into the discharge mode, and next watchdog time count starts. O Unless the SCK pulse is input, WDT will not be cleared, and during the charging period of TW pin, RESETB="L". P When the VIN pin becomes lower than the detector threshold voltage(-VDET), RESETB outputs "L". Watchdog Timeout period/Reset hold time The watchdog timeout period and reset hold time can be set with an external capacitor to TW pin. The next equations describe the relation between the watchdog timeout period and the external capacitor value, or the reset hold time and the external capacitor value. tWD(s) = 3.1*10 x C (F)
6
tWR(s)=TWD/9 The watchdog timer (WDT) timeout period is determined with the discharge time of the external capacitor. During the watchdog timeout period, if the clock pulse from the system is detected, WDT is cleared and the capacitor is charged. When the charge of the capacitor completes, another watchdog timeout period starts again. During the watchdog timeout period, if the clock pulse from the system is not detected, during the next reset hold time RESETB pin outputs "L". After starting the watchdog timeout period, (just after from the discharge of the external capacitor) even if the clock pulse is input during the time period "TWDI", the clock pulse is ignored. TWDI[s]=TWD/10 Released Delay Time (Power-on Reset delay time) The released delay time can be set with an external capacitor connected to the CD pin. The next equation describes the relation between the capacitance value and the released delay time (tpLH). tpLH(s)=3.7x106x C(F) When the VDD voltage becomes equal or less than (-VDET), discharge of the capacitor connected to the CD pin starts. Therefore, if the discharge is not enough and VDD voltage returns to (+VDET) or more, thereafter the delay time will be shorter than tpLH which is expected. Minimum Operating Voltage We specified the minimum operating voltage as the minimum input voltage in which the condition of RESETB pin being 0.1V or lower than 0.1V. (Herein, pull-up resistance is set as 100k in the case of the Nch open-drain output type. RESETB Output RESETB pin's output type is selectable either the Nch open-drain output or CMOS output. If the Nch open-drain type output is selected, the RESETB pin is pulled up with an external resistor to an appropriate voltage source. Clock Pulse Input Built-in watchdog timer is cleared with the SCK clock pulse within the watchdog timeout period.
8
R5105N
Power on Reset Operation against the input glitch
+V DET -V DET 0V
) (tpLH1 < tpLH
VDD
Complete Discharge
CD
+VTCD -V TCD 0V
Incomplete Discharge
RESETB
0V
tpLH1
tpLH
APPLICATION NOTES
If a resistor is connected to the VDD pin, the operation might be unstable with the supply current of IC itself.
VDD R1 VIN R2
VDD R1 VIN
VDD R1 VIN
R5105 CMOS
R2
R5105 RESETB
R5105 RESETB
Output
RESETB
Connection examples affected by the conduction current
9
R5105N
TYPICAL CHARACTERISTICS
1) Supply Current vs. Input Voltage
R510xN151A/C, R510xG151A/C 20 18 16 14 12 10 8 6 4 2 0 0
20 18 16 14 12 10 8 6 4 2 0 0 R510xN301A/C, R510xG301A/A
CURRENT Iss [uA]
CURRENT Iss [uA]
105 25 -50
105 25 -50
1
2 3 4 SUPPLY VOLTAGE [V]
5
6
1
2 3 4 SUPPLY VOLTAGE [V]
5
6
2)
Detector Threshold vs. Temperature
R510xN151A/C, R510xG151A/C 1.530 2.740 DETECT VOLTAGE [V] 2.730 2.720 2.710 2.700 2.690 2.680 2.670 2.660 -50 -25 0 25 50 75 TEMPERATURE [] 100 125 R510xN271A/C, R510xG271A/C
DETECT VOLTAGE [V]
1.520 1.510 1.500 1.490 1.480 1.470 -50
-25
0 25 50 75 TEMPERATURE []
100
125
R510xN421A/C R510xG421A/C 4.280 DETECT VOLTAGE [V] 4.260 4.240 4.220 4.200 4.180 4.160 4.140 4.120 -50 -25 0 25 50 75 TEMPERATURE [] 100 125
10
R5105N
3) Detector Threshold Hysteresis vs. Temperature
R510xN151A/C R510xG151A/C 7.0 7.0 R510xN271A/C R510xG271A/C
HYSTERESIS [%]
5.0
HYSTERESIS [%] -25 0 25 50 75 TEMPERATURE [] 100 125
6.0
6.0
5.0
4.0
4.0
3.0 -50
3.0 -50
-25
0
25 50 75 TEMPERATURE []
100
125
R510xN421A/C R510xG421A/C 7.000
HYSTERESIS [%]
6.000
5.000
4.000
3.000 -50
-25
0
25 50 75 TEMPERATURE []
100
125
4)
Nch Driver Output Current vs. VDS Topt=25C
20 18 OUTPUT CURRENT[mA] 16 14 12 10 8 6 4 2 0 0.0 0.2 0.4 0.6 0.8 VDS [V] 1.0 1.2 1.4 VDD=1.0V VDD=1.5V R510xN, R510xG VDD=6.0V VDD=5.0V VDD=3.0V VDD=2.0V VDD=4.0V
11
R5105N
5) Nch Driver Output Current vs. VDD
20 18 OUTPUT CURRENT [mA] OUTPUT CURRENT [mA] 16 14 12 10 8 6 4 2 0 0 1 2 3 4 SUPPLY VOLTAGE VDD [V] 5 6 105 25 Vds=0.3V Topt=-40 R510xN, R510xG 20 18 16 14 12 10 8 6 4 2 0 0 1 2 3 4 5 SUPPLY VOLTAGE VDD [V] 6 105 Topt=-40 Vds=0.5V 25 R510xN, R510xG
6) Pch Driver Output Current vs. VDD
2.0 1.8 OUTPUT CURRENT [mA] 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 SUPPLY VOLTAGE [V] 5 6 -40 25 105 R510xN, R510xG OUTPUT CURRENT [mA] VDS=0.3V 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 SUPPLY VOLTAGE [V] 5 6 105 -40 25 R510xN, R510xG VDS=0.5V
2.0 1.8 OUTPUT CURRENT [mA] 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 1
R510xN, R510xG VDS=1.0V -40 25
105
2 3 4 SUPPLY VOLTAGE [V]
5
6
12
R5105N
7) Released Delay Time vs. Input Voltage
500 480 460 440 420 400 380 360 340 320 300 0 1
8)
Released Delay Time vs. Temperature
R510xN, R510xG 500 480 460 440 420 400 380 360 340 320 300 -50 -25
R510xN, R510xG POWER ON RESET DELAY tpLH[ms] Topt=25
POWER ON RESET DELAY tpLH [ms]
VDD=6V
2 3 4 5 SUPPLY VOLTAGE [V]
6
7
0 25 50 75 100 125 150 TEMPERATURE []
9)
Detector Output Delay Time vs. Temperature
R510xN, R510xG
10) WDT Reset Timer vs. Temperature
R510xN, R510xG
50 48 46
100 90 80 70 TIME [usec] 60 50 40 30 20 10 0 -50 -25 0 25 50 75 TEMPERATURE [] 100 125 INPUT
1us (-VDET)+1 (-VDET)-1
RESET TIME [msec]
44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 TEMPERATURE [] 100 125
11) WDT Timeout Period vs. Temperature
400 380 360 Timeout Period [msec] 340 320 300 280 260 240 220 200 -50 -25 0 25 50 75 TEMPERATURE [] 100 125 R510xN, R510xG
12) WDT Reset Timer vs. Input Voltage
R510xN, R510xG 50 48 46 RESET TIME [msec] 44 42 40 38 36 34 32 30 1 2 3 4 SUPPLY VOLTAGE [V] 5 6
13
R5105N
13) WDT Timeout Period vs. Input Voltage
400 380
Timeout Period [msec]
R510xN, R510xG
360 340 320 300 280 260 240 220 200 1 2 3 4 SUPPLY VOLTAGE [V] 5 6
14


▲Up To Search▲   

 
Price & Availability of R5105N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X